
An Example Routine Calling the “C”

Implementation of the Anderson-Moore(AIM)

Algorithm

Gary S. Anderson and Rebecca Zarutskie
Board of Governors

Federal Reserve System
Washington, DC 20551

Voice: 202 452 2687
Fax: 202 728 5892
ganderson@frb.gov

August 19, 1998

Abstract

This paper describes how to use the “C” implementation of the Anderson-
Moore Algorithm[1, 2, 3] for imposing the saddle point property in dy-
namic models. The paper uses a simple two-equation firm value model to
demonstrate model construction and solution.

Contents

1 Introduction and Summary 2

2 The Firm Value Model 2

3 Model Representation and Preprocessing 2

4 Using the Anderson Moore Algorithm 3

5 Supporting Routines 5

A Files 9

B Macros 9

C Identifiers 9

1

1 Introduction and Summary

This paper describes how to use the MATLAB implementation (currently down-
loadable at http://federalreserve.gov/pubs/oss/oss4/ code.html) of the Anderson-
Moore Algorithm[1, 2, 3] for imposing the saddle point property in dynamic
models. The paper uses a simple two-equation model to demonstrate model
construction and solution.

2 The Firm Value Model

This paper uses AIM to investigate the solution of a simple linear model, first
presented in [3], which describes the value of a firm.

The model consists of two equations:

Vt+1 = (1 + r)Vt −Dt+1

Dt = (1− δ)Dt−1 (1)

where V is the value of the firm, D is the dividend, r is the interest rate, δ is
the growth rate of the dividend (here, negative).

3 Model Representation and Preprocessing

Describe the linear model using the MDLEZ syntax and save the model in a
file, here called firmvalue.mdl

MODEL> Provides a name for the model. This does not affect the AIM cal-
culations.

ENDOG> Provides names of the endogenous variables. In the AIM formu-
lation, modellers must completely describe the long run behavior of the
system. As a result, all variables are endogenous. “Exogenous” variables
must have, at least, a simple forecasting equation.

EQUATION> Provides a name for the equation. This does not affect the AIM
calculations.

EQTYPE> Specifies the type of equation. This does not affect the AIM cal-
culations. The keyword STOCH indicates the equation has a stochastic
error term. The keyword IMPOSED indicates the equation has no error
term.

EQ> Provides the model equation.

2

"firmvalue.mdl" 3a ≡

MODEL> FIRMVALUE

ENDOG>
V
DIV

EQUATION> VALUE
EQTYPE> IMPOSED
EQ> LEAD(V,1) = (1+R)*V - LEAD(DIV,1)

EQUATION> DIVIDEND
EQTYPE> IMPOSED
EQ> DIV = (1-DELTA)*LAG(DIV,1)

END

�

Run the model file through the model preprocessor and compile the result-
ing “C” program. The executable, mdlezAimC, is available on the Internet at
http://www.federalreserve.gov/pubs/oss/oss4/parser.html.

mdlezAimC firmvalue.mdl > firmvalue.c
gcc -c firmvalue.c

This creates an executable file firmvalue.o.

4 Using the Anderson Moore Algorithm

Create a program to call AIM and the supporting routines in firmvalue.o The
small numbers to the right of the descriptions refer to sections in the paper
describing the “C” code.

"firmCaller.c" 3b ≡

〈global declarations, include files and defines 5a〉
main() {
〈declare variables 5b〉
〈allocate model specification variables 6a〉
〈call procedure for obtaining model specification 6b〉
〈allocate matrices for aim results 6c〉
〈call procedure for constructing g and h given p 7〉
〈call aim and print some of the results 8〉
}
�

3

Compile the caller

gcc -c firmCaller.c

This creates the executable file firmCaller.o.
Link the programs with the AIM library.

f77 -o firmvalue firmvalue.o firmCaller.o $AIMLIB

where for $AIMLIB points to the AIM routines, LAPACK and BLAS rou-
tines, and the SRRIT routines.

AIMLIB = -lfaim -lsrrit lapack_os5.a blas_os5.a

The archives faim.a srrit.a lapack os5.a blas os5.a are contained in the tar
file of C libraries.

This creates the executable file firmvalue which produces the output:

Number of parameters: 2
Parameter names:

R
DELTA

G Matrix (transposed):
0.000 0.000
0.000 -0.100
-1.100 0.000
0.000 1.000

H Matrix (transposed):
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
1.000 0.000

roots, (1.100000,0.000000)
roots, (0.100000,0.000000)
roots, (0.000000,0.000000)
roots, (0.000000,0.000000)
q matrix has 2 rows.
q matrix has 1 rows associated with large roots.
q matrix has 1 rows associated with auxiliary initial conditions.
Caller has terminated normally with inform = 0.

4

5 Supporting Routines

〈global declarations, include files and defines 5a〉 ≡

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#define NEGLIGIBLEDOUBLE 1.0e-9
#define UPPERLIM 1.0
void compute_aim_data();
void compute_aim_matrices();

�

Macro referenced in scrap 3b.

〈declare variables 5b〉 ≡

/*model specification parameters*/
int np,neq,nlag,nlead;
double *p;
char ***param;
char **modname;
char ***eqname;
int **eqtype;
char ***endog;
int **delay;
int **vtype;
double **g;
double **h;

/*aim parameters*/
double cond;
double epsi;
double uprbnd;
int iq,nexa,nnum,nbig,ndim;
double *rootr,*rooti,*cof,*cofq;
int *nroot,itsbad,inform;

/*miscellaneous variables for loops counters*/
int i,j;

�

Macro referenced in scrap 3b.

5

〈allocate model specification variables 6a〉 ≡

param = (char ***) calloc(1,sizeof(char**));
modname = (char **) calloc(1,sizeof(char*));
eqname = (char ***) calloc(1,sizeof(char**));
eqtype = (int **) calloc(1,sizeof(int*));
endog = (char ***) calloc(1,sizeof(char**));
delay = (int **) calloc(1,sizeof(int*));
vtype = (int **) calloc(1,sizeof(int*));
g = (double **) calloc(1,sizeof(double*));
h = (double **) calloc(1,sizeof(double*));

�

Macro referenced in scrap 3b.

〈call procedure for obtaining model specification 6b〉 ≡

compute_aim_data(param, &np, modname, &neq, &nlag, &nlead,
eqname, eqtype, endog, delay, vtype);

printf("Number of parameters: %d\n", np);

printf("Parameter names:\n");
for (i = 0; i < np; i++)

printf(" %s\n", (*param)[i]);
printf("\n");

�

Macro referenced in scrap 3b.

〈allocate matrices for aim results 6c〉 ≡

/*** Change the following as needed for the particular problem ***/
p = (double *) calloc(2, sizeof(double)); /* p = number of parameters */

ndim=neq*(nlag+nlead);
rootr=(double *) calloc(ndim*ndim,sizeof(double));
rooti=(double *) calloc(ndim*ndim,sizeof(double));
nroot=(int *) calloc(ndim*ndim,sizeof(int));
cof=(double *) calloc(neq*(neq+ndim),sizeof(double));
cofq=(double *) calloc(ndim*ndim,sizeof(double));

�

Macro referenced in scrap 3b.

6

〈call procedure for constructing g and h given p 7〉 ≡

p[0] = 0.10;
p[1] = 0.90;

compute_aim_matrices(p, g, h);
printf("G Matrix (transposed):\n");
for (i = 0; i < (nlag + 1) * neq * neq; i++)

{
printf("%.3f ", (*g)[i]);
if (i % neq == neq - 1)

printf("\n");
}

printf("\n\n");

printf("H Matrix (transposed):\n");
for (i = 0; i < (nlag + 1 + nlead) * neq * neq; i++)

{
printf("%.3f ", (*h)[i]);
if(i < (nlag+ 1)*neq *neq)

{cof[i]= (*g)[i] + (*h)[i];}
else {cof[i] = (*h)[i];}
if (i % neq == neq - 1)

printf("\n");
}

printf("\n\n");

�

Macro referenced in scrap 3b.

7

〈call aim and print some of the results 8〉 ≡

cond = NEGLIGIBLEDOUBLE ;
epsi = NEGLIGIBLEDOUBLE ;
uprbnd = UPPERLIM + NEGLIGIBLEDOUBLE;
iq = 0;/*on input, the cofq array contains 0 auxiliary initial conditions*/

faim_(cof,&neq,&nlag,&nlead,&epsi, &cond, &uprbnd, cofq,&iq,rootr, rooti,
nroot,&nexa, &nnum, &nbig, &itsbad, &inform);

for(i=0;i<ndim;i++){printf("roots,(%f,%f)\n",rootr[i],rooti[i]);}
printf("q matrix has %d rows.\n",iq);
printf("q matrix has %d rows associated with large roots.\n",nbig);
printf("q matrix has %d rows associated with auxiliary initial conditions.\n",
nnum+nexa);
if(inform == 0)
{ printf("Caller has terminated normally with inform =%d.\n",inform);}
else { printf("Caller has terminated with inform =%d.\n",inform);}

�

Macro referenced in scrap 3b.

.

8

A Files

"firmCaller.c" Defined by scrap 3b.

"firmvalue.mdl" Defined by scrap 3a.

B Macros

〈allocate matrices for aim results 6c〉 Referenced in scrap 3b.

〈allocate model specification variables 6a〉 Referenced in scrap 3b.

〈call aim and print some of the results 8〉 Referenced in scrap 3b.

〈call procedure for constructing g and h given p 7〉 Referenced in scrap 3b.

〈call procedure for obtaining model specification 6b〉 Referenced in scrap 3b.

〈declare variables 5b〉 Referenced in scrap 3b.

〈global declarations, include files and defines 5a〉 Referenced in scrap 3b.

C Identifiers

cof : 5b, 6c, 7, 8.
cofq : 5b, 6c, 8.
cond : 5b, 8.
delay : 5b, 6ab.
endog : 5b, 6ab.
epsi : 5b, 8.
eqname: 5b, 6ab.
eqtype : 5b, 6ab.
g: 3b, 5b, 6a, 7.
h: 3b, 5a, 5b, 6a, 7.
inform : 5b, 8.
iq : 5b, 8.
itsbad : 5b, 8.
nbig : 5b, 8.
ndim : 5b, 6c, 8.
neq : 5b, 6bc, 7, 8.
nexa : 5b, 8.
nlag : 5b, 6bc, 7, 8.
nlead : 5b, 6bc, 7, 8.
nnum: 5b, 8.
rooti : 5b, 6c, 8.
rootr : 5b, 6c, 8.
uprbnd : 5b, 8.
vtype : 5b, 6ab.

9

References

[1] Gary Anderson. A reliable and computationally efficient algorithm
for imposing the saddle point property in dynamic models. Un-
published Manuscript, Board of Governors of the Federal Reserve
System. Downloadable copies of this and other related papers at
http://irmum1.frb.gov/˜m1gsa00/summariesAbstracts.html, 1997.

[2] Gary Anderson and George Moore. An efficient procedure for solving linear
perfect foresight models. Unpublished Manuscript, Board of Governors of
the Federal Reserve System. Downloadable copies of this and other related
papers at http://irmum1.frb.gov/˜m1gsa00/summariesAbstracts.html,
1983.

[3] Gary Anderson and George Moore. A linear algebraic procedure for solving
linear perfect foresight models. Economics Letters, 17, 1985.

[4] Michael W. Berry. Large scale sparse singular value computations. Univer-
sity of Tennessee, Department of Computer Science, 1996.

[5] Olivier Jean Blanchard and C. Kahn. The solution of linear difference
models under rational expectations. Econometrica, 48, 1980.

[6] Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns
Hopkins, 1989.

[7] E. V. Krishnamurthy. Parallel Processing: Principles and Practice.
Addison-Wesley, 1989.

[8] David G. Luenberger. Time-invariant descriptor systems. Automatica,
14:473–480, 1978.

[9] Ben Noble. Applied Linear Algebra. Prentice-Hall, Inc., 1969.

[10] J. Taylor. Conditions for unique solutions in stochastic macroeconomic
models with rational expectations. Econometrica, 45:1377–1385, —SEP—
77.

[11] C. H. Whiteman. Linear Rational Expectations Models: A User’s Guide.
University of Minnesota, 1983.

10

